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RECONSTRUCTION OF THE SET OF CONTROLS 
BY MEASUREMENTS OF THE STATES OF 

AN EVOLUTION SYSTEMf 

A. I. K O R O T K I I  

Ekaterinburg 

(Rece/ved IAugust 1995) 

An inverse problem of dynamics is considered, namely, to reconstruct a set of a priori unknown controls (perturbations) applied 
to a non-linear dynamical system and generating an observable motion of the system. The information for the reconstruction is 
obtained by approxhmite measurements of the changing phase states of the system; the reconstruction is carried out in real time 
in the Hansdorff metric. This problem is known to be ill posed. It is proposed to solve it using constructive, physically realizable, 
regularizing fmite-staged position algorithms for the stable dynamical approximation of the unknown set. O 1997 Elsevier Science 
Ltd. All rights reserved. 

This paper continues the researches described in [1-5]; in its basic ideas it relies on previous results 
[6-9]. Similar approaches to determining the parameters of dynamical systems, based on guaranteed 
estimation methods, were considered, inter alia, in [10-13]. 

1. STATEMENT OF THE P R O B L E M  

Consider a controlled dynamical system which, over a time interval T = [to, O] (--~ < t o < O < +o~), 
is described by the non-linear equation 

y(t)  + A( t )y ( t )  = B(t, y( t))u(t)  + f ( t ) ,  y(t  o) = Yo (1.1) 

The system is driv~m by a priori unknown controls u = u(t). For each admissible control u ~ Y. the system 
has a well-defined motion, y = y(u) = y(t; u). It is required, by observing some motion of the system 
and by making approximate measurements of the changing statesy(t), to determine in real time all the 
controls u e E that generate that motion. Throughout this paper, unless otherwise stated, t ¢ T. 

Let Vbe a separable reflective Banach space, embedded continuously and densely in a I-filbert space 
H. Identifying H vdth its adjoint H*, we obtain a triple of continuously and densely embedded spaces 
V C H C  V* (to fv:our ideas, we assume that Cv[ [. I I v ~  > CHII" I [H~ > I1" ] Iv.). Letp andp0 be giyen 
numbers such that 1 < p <- Po < oo, 2 <~ Po. Define X = LP(T; V) N Lee(T; H); thenX* = L q(T; V*)+L~'(T; 
H), where 1/p + 1/q = 1, 1/po + 1/qo = 1. Let W = {y ~ X :  y ¢ X*}, where y is the derivative ofy in 
the sense of the distribution space I l Y I I w = I l Y I Ix + I l Y I Ix. The definitions of function spaces that 
we are using, as well as the main properties of such spaces, may be found, for example, in [14, 15]. In 
particular, X and ]~V are reflective Banach spaces and Wis continuously embedded in C(T; H). 

For anyy, z, e IV, we have the following formula of integration by parts 

t 

(y<,), z<,)>-(y<s), z<,)): I ((y<~), z~))+ (z<~), y<~)>)d~ 
s 

Ify = x, this formula becomes 

lly<,)ll~ - lly<s)ll~ = 2i<~<~), y<~)>d~ 
$ 

where (., • ) is the canonical duality between V* and V; its restriction to H is the scalar product in H, 
seT. 

For each element y, ¢ W, the Newton-Leibniz formula holds in the space V* 
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t 

y(t) = y(s)+ J y(x)dx 
$ 

Each element y ¢ W is strongly differentiable over T as a mapping T --, IF*, and the corresponding 
strong derivative is identical almost everywhere in T with the derivative ~. 

Let {A(t) : t ~ 7"} be a family of radially continuous monotone operators from Vto  V* such that 
~(t)v ,  w) is a continuous function for any fixed v, w ~ W, (A(t)y(t),z(t)) is a measurable functional of 
t for any fixed y,z e X, and constants C1 > 0, C2 ~ R, C3 > 0 exist such that, for any t G T, v e V 

(A( t )v ,  v )>~ c, llollg -c=, [IA(t)vll v. <~ c3(11  117' + 
Let  {B(t ,  z) : t ~ T, z ~ 14} be a family of continuous linear operators acting from a finite-dimensional 

Hilbert space into H, in such a way that the mapping T x H D (t, z) --> B(t, z) ¢ L(U; H) is continuous 
and for anyt ¢ T, z e  H 

nB(t,x)- B(t,z)AL v:m CAx- zH. 
]B(t,Z~[t.(u:U ) <~ Cs(~Z~u + 1) 

where C4 and (75 are certain non-negative constants, and L(U; H) is the Banach space of continuous 
linear operators from U to H with natural norm. 

Let Yo ~ H , f  ¢ X* Iq C(T; 1/*), let P be a convex bounded dosed set of elements of U, and let I: be 
the set of all measurable mappings T ~ P (this set is convex, bounded and closed in the space Lr(T; 
U), 1 ~< r < **). The set P is the set of instantaneous bounds for the admissible controls in Y. 

Under the assumptions just outlined concerning the parameters, the Cauchy problem (1.1) has a 
unique solution in the space W. Moreover, the mapping 

H x X ° x Lr(T;U) ~ (yo , f ,u )  ~ y = y (yo , f ,u )  ~ C(T;H) 

is continuous [14, Ch. 6, Section 1]. The solution y = y(u) will also be treated as the motion of the 
dynamical system (1.1) over a time T in the phase space H from its initial state Y0 when driven by the 
control u e Y.. Let Y = 0'(u) : u ~ Y.} be the set of all possible motions of system (1.1) from the initial 
state Y0 (the set Yis bounded in IT'). 

For each motiony ~ Y, we introduce the set of all controls 

7-.0,)= {u~ Y-:y(u)=y} 

which generate that motion. This set is non-empty and will generally contain more than one element; 
it is always convex, bounded and closed in L'(T; U). At each particular time t one can measure the state 
y(t) of the system; the measurement result ~(t) is related to the state y(t) by the equation 

~(t) = y( t )  +'q(t), II (t)ll,, h (1.2) 

The problem is to construct an algorithm which, based on the evolution of the process (in real time) 
and the results (1.2) of measurements of the changing phase states of an observable motion y ¢ Y of 
the dynamical system, will reconstruct the set ,T0,) approximately (in the sense of the Hausdorff metric). 
This should be done in such a way that the reconstruction is more accurate whenever the input data 
are more accurate. The equation of motion and the set P are assumed known. 

Let E be the set of all mappings T --> I/*, and let Sh be a closed sphere in V, of radius h > 0, with 
centre at zero, and 

~n(Y) = {~ ~ E.: ~(t) = y(t)+'q(t), ~(t) ~ Sh}, y ~ Y 

Consider the set Conv(Z) of all non-empty convex bounded closed subsets of Z C Lr(T; U); the 
Hausdorff metric on this set is defined as 

p ( ~ l , Y . 2 ) = m a x l s u ~  irlf [[Ul-U2[ r , s u n  inf~ul-u2llLr(T,U)} 
LulEz, 1 u2~E 2 t/g (T;U) u2~2u l~Et  
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We say that a fmnily (Dh)h>O of operators Dh: ~ ~ Cony(I:) is p-regularizing at a pointy • Yif  

sup{p(Dh~,Y~(Y)):~ • ~ h ( Y ) }  ' ' >  0 ,  h ---> 0 

A solution of the problem will be sought in the class of finite-staged dynamical p-regularizing position 
algorithms (FDPAs). By an FDPA we mean a triple 

m m - 1 m - I 
O=(('~i)i=l;(Zi),= 0 ;(Gi)i= O ) ( 1 . 3 )  

where m is a natural number, (xi)m=0 is a partition of the interval T by points x/(to = x0 < xl < • . .  < 
Xm = 0), Zi is a mapping T x T x V* x V* x Conv(~xi, Xi+x)) --* V*, Gi is a mapping T x IT* x 1,1" --> 
Conv(Y_.[x, xi+l), and E[xi, x/+a) is the set of all non-empty convex bounded closed subsets of ~xi, Xi+l) 
C L" ([x i, x/+0; U). The performance of such algorithms in time and their dynamical realizations have 
been described in detail in [1-5, 7, 8] (cf. the formation of the controlled process below). In a physical 
sense, the mappings (Zi) form the motion of an auxiliary model controlled system, and the mappings 
(Gi), in a positionaJ way, generate the control impulses for the model system [6]. 

Given an FDPA (1.3) and a function g • ~, the pair of elements 

(z(.), g(.)) = (z(.ID, ~), g(.I D, ~)) ~ (T ---) V*) × Conv(Y.) 

formed according to the rule 

Z(to)=~(to), z(t)= Zi(t, xi,z('ci),~(zi),gi(.)), "ci <t<~ xi+ ], i = 0  ..... m - I  
g(')lt,:,.,) = gi(') = Gi('ci,z(zi ),~('¢i )),- i--  0 ..... m - 1 

will be called a controlled process for the FDPA (1.3) and measurement ~ • ~. Corresponding to each 
FDPA (1.3) we have an operator D : E ~ Conv(Y.), which we will denote, for simplicity by the same 
symbol; its action is described by the rule O~ = g(- I D, ~). This operator will be identified with the 
FDPA (1.3) itself. Obviously, the operator has an unpredictability property: the condition ~l(X) = ~(x), 
to ~< x ~< t, t ~ T implies that the restrictions to the interval [to, t] of the images D~I and D~2 coincide. 
Note that algoritlnns for reconstructing controls that have this property are important in practice, e.g. 
in eases where one is concerned with a single reconstruction, when the computations cannot be repeated, 
or when the result,,~ of the reconstruction are being used in feedback systems. 

Thus, to solve the reconstruction problem, it will suffice to construct a p-regularizing family of FDPAs. 
We shall outline some possible constructions of this sort below. 

2. C O N S T R U C T I O N  OF A R E G U L A R I Z I N G  FAMILY OF A L G O R I T H M S  

We will first introduce a few auxiliary notions and notations. For fixedy • Y, we define a multi-valued 
mapping 

Q(.ly) : T ~ t --> Q(tly) • Cony(P) 

by the rule 

Q(tl y) = {w • P : .~(t) + A(t)y(t) = B(t, y(t))w + f(t)} 

ify is differentiable at t and this set is non-empty; otherwise, Q(t lY) = P- Clearly, E(y) = sel Q(. l Y), 
where selQ (- l Y) is the set of all measurable selectors of the multivalued mapping Q(. I Y), Q(" [ Y) • 
M(T; P), where M(,T; P) is the space of all measurable, bounded (hence also integrable), multivalued 
mappings T ~ Cony(P). For Q • M(T; P), we define 

(p(t,llQ) = min{(l, w)u: w ~ Q(t)}, l ~ E 

where E is the closed unit sphere in Uwith centre at zero (that is, q~(t, • ]Q) is a lower support functional 
for the convex compact set Q(t)). 

Note that for each Q ¢ M(T; P) one has q)( -,. [Q) ¢ B, where B is the Banach space of Carath6odory 
functions ¢p:T × E .-~ R with the natural norm 
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H II,, = 1 
7" 

We now define a new metric o in M(T; P) by 

It can be shown that if t~(Qn, Q) ---> o, then also p(sel Qn, sel Q) ~ O. Hence it follows that in order 
to solve the reconstruction problem we need only construct a family (Ah)h>0 of non-predicting p- 
regularizing operators Ah: ~ ~ M(T; P), that is 

sup{ff(Ah~,Q('IY)):~ ~ ~h(Y)} "* 0, h--* 0 

Then (Dh)h > 0, Dh~ = sel Ah~ will be a p-regularizing family of  non-predicting operators. 
Such operators A, in turn, may be sought in the class of  finite-staged dynamical position algorithms 

with multi-valued pieeewise-constant realizations of the controls (FDPAMs) 

A ~ ( ( ~ i ) i m = O ' , ( Z * ~  m-I  , m-I  (2.1) 

where Z* is a mapping T x T x IF* x V* x Conv(P) ~ V* and G* is a mapping T x V* x V* -~ 
Conv(P). A controlled process for the FDPAM (2.1) and a function ~ ¢ E is defined as a pair of  functions 
on T 

(Z('), Q(')) = (z('l D, ~), Q(.I D, ~)) ~ (T --~ V* ) x (T --> Conv(P)) 

formed by the rule 

z(to)=~(to), z(t)=ZT(t,  xi,z(xi),~(xi),Qi(.)), x i <t <- xi+ l, i = 0  . . . . .  m - I  

Q(t)=Qi(t)=GT(xi,z(xi),~(%)), xi<t<~xi+l, i = 0  ..... m - I  

The algorithm (2.1) and the corresponding operator A : ~ ~ ~ ~ A~ = Q(.  ) e M(T; P), as mentioned 
previously, will be identified. Clearly, any such operator has the unpredictability property. We will now 
construct suitable families of  FDPAMs. 

Condition 1. A function co( -,. ) : [0, **) x [0, **) ~ [0, **) exists such that ¢0(8, h) --> 0 as 5, h ~ 0 and 

]A(t)y(t) + B(t, y(t))w + f ( t )  - A(s)(y(s) + "q) - B(s, y(s) + row - f(s)ll v. ~ ~(8, h) 

for anyt,  s ¢ T, I t - s  I ~ < 8 , y e  Y, r l e  Sh, wC P. 
Define a family of  FDPAMs as follows: 

f l ~m(h) / , xm(h)- I  I , ~ m ( h ) - !  

,(Ch,);: o ) 
Zhi( t , s , z ,x ,F)=x,  t , s ~ T ,  Z,x~V*,  F ~ C o n v ( P )  

G*hi ( t , z , x )  = 

= w ~  P: +A('Cta_t)z-B('Chi_l,z)w-f('chi_ I <~ ¢o(8,h)+2hC v 18 
"C hi -- '~ hi-I  V* 

(2.2) 

for t ~ [Xh/, Xh/+ 1),Z,X ¢ V*; otherwise, G~i(t,z,x) = P. 
Let 5(h) be the diameter of  the partition of  T, i.e. 

S(h)-- max{l:n/+l - Zhi [ i = 0 . . . . .  m ( h )  - I) 

Theorem. Assume that condition I is satisfied and in addition 5(h ) ---> O, h/~(h ) - ,  0 as h --> O. Then 
(2.2) is a a-regularizing family of  FDPAMs at every point y ¢ Y. 
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Proof. Le ty  e Y. Fix an arbitrary sequence {hki, hk > 0,hk --* 0, and consider an arbitrary controllable 
process (zk(-), Qk(" )) corresponding to the FDPAM (2.2) with ~ = ~ ~ ~h(Y), h = hk. It is required 
to show that ¢r(Qk( • ), Q(.  l Y)) --* 0 as k --, **. 

Suppose that this convergence fails to hold. Then, by the definition of  o 

I H~t , i  Qk ) - ~(t, .i Q)~c~ ~)'tt -~ o 
T 

Fix an arbitrary e > 0 and choose some finite e-net {ll, • • . ,  In} for E. Then 

inf "" -n l l - l '~u <~ ~ sup (2.3) 

Without loss of  generality, we may assume, extracting a subsequence if necessary, that for everyj  
{ 1 , . . .  ,n} 

~(',/AQk) -~ **(', lj) wemy in L2(r; R) 

where 9"( ' ,  lj) is a function in L2(T; R). By the properties of lower support functions, it can be shown 
that for everyj  ~ .[ 1 . . . . .  n} 

cp*(t, Is) >~ ~ t ,  ljlQ) for almost every t ¢ T 

It follows from 1the definition of  a controlled process that, for any u ~ E(y) and any subscript k 

[U]iEQk('[hi), i = l  ..... m ( h ) - l ,  h=h  k 

where [¥], is the value of  the integral of  ¥ over the interval Xh/-i, Xh/ I ,h = hk, divided by the length of  
the interval. 

The above inclusion relations imply the inequalities 

,p('c,,,.l, IQ, )-[(,,<.).,, )~, ], h = h, 

A unique fun~ion ~ ~ .Y.,(y) exists such that 

(~(x), lj )u = ep(x, lj [Q) for almost every x ¢ F 

For u = v i we get 

q>(',,.',lQ,) <-- [,'(.',IQ)],. [¢(,',)],, 
Weak convergen¢~: and the inequalities just proved imply that 

f,(', ljlQk) ~ q~*(',/j) strongly in Le(T; R) 

We have tp*(., ls) --: ~(. , / jIQ). 

Indeed, otherwise it would follow that (all integrations are over the interval I') 

I 'l>(t.ts IQ)d' < I~'¢',ls )dr 
On the other hand 

Therefore 

h = h t 

s s4,.,,tQ)<,,, s s,>'(,.,,)<,, 

contrary to our assumption. 

(2.4) 
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Using (2.3), we obtain  the inequality 

~p(t,.[Q k )-tp(t,.[Q)Ic(e) <~ max tp(t, ljlQk )-~(t,/,lQ)]+ E L l~j~n 

where  L is some positive constant  independent  o f  k, t andj .  By (2.4) and the  fact that  s is arbitrary, we 
have 

contrary  to  our  initial assumption.  Thus, O(Qk(.  ), Q ( .  lY)) -~ 0 as k --* oo. This proves the theorem.  

Remarks. 1. Concerning classes of partial differential equations that can be represented as system (1.1) in the 
functional-analytic formulation see, e.g. [14, 15]. 

2. Condition 1 is satisfied for problems in which the family of operators {A{t}: t ¢ T} satisfies the additional 
condition of equicontinuity in some neighbourhood of the set of all states of system (1.1). 

3. If U is an infinite-dimensional separable Hilbert space, then U can be equipped with a new scalar product, 
relative to whose norm the sphere E is compact [16]. Then the scheme of the above arguments (with the new scalar 
product and norm on U) can be extended without change to this infimte-dimensional case. 

4. In practice, if the entire set of controls generating an observable motion has been determined, it is frequently 
convenient to take the Chebyshev centre of the set or an element of minimum norm as the solution of the 
reconstruction problem. It can be shown that the conditions of the problem considered above, converge of the 
sets in the I-Iausdofff metric implies convergence of their Chebyshev centres and elements of minimum norm [17]. 

5. A different method for the dynamical reconstruction of the set of controls generating an observable motion 
was descrl'bed in [3]. 

This research was suppor ted  by the Russian Foundat ion  for  Basic Research  (96-01-00846) and the  
Internat ional  Cent re  o f  Science and Technology (94-008). 

R E F E R E N C E S  

1. KIM, A. V., KOROTKII, A. I. and OSIPOV, Yu. S., Inverse problems of the dynamics of parabolic systems. ~ Mat. Mekh., 
1990, 54, 5, 754-759. 

2. KOROTKII, A. I. and OSIPOV, Yu. S., Dynamical modelling of the parameters in hyperbolic systems./zv. Akad. Nauk SSSIZ 
Tekhn. Kibem., 1991, 2, 154-164. 

3. KOROZKII, A. I. and TSEPELEV, L A,  Dytaamical solution of the inverse problem of parameter determination in a 
Goursat-Darboux system. ~udy Inst. Mat. Mekh. UraL OUL Ross. Akad. Nauk, 1995, 3, 88-103. 

4. OSIPOV, Yu. S., KRYAZHIMSKII, A. V. and MAKSIMOV, V. I., Problems of Dynamical Regularization for Systems with 
Distributed Pammaers. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, Sverdlovsk, 1991. 

5. VDOVIN, A. Yu. and KRYAZHIMSKII, A. V., The reconstruction of a set of controls by trajectory measuremenm. In Remvr.h 
in SystemsAna/ys/s andApp//caaons. Izd. Ural. Univ., Sverdlovsk, 1990. 

6. KRASOVSKII, N. N. and SUBBOTIN, A. I., Positional Diffemnaal Games. Nanka, Moscow, 1974. 
7. OSIIK)V, Yu. S. and KRYAZHIMSKII, A. V., The dynamical solution of operator equations. DokL Akad. Nauk SSSR., 1983, 

269, 3, 552-556. 
8. KRYAZHIMSKII, A. V. and OSIPOV, Yu. S., Modelling of the control in a dynamical system, lzv. Aha~ Nauk SSSR. Tekh~ 

K/bern., 1983, 2, 51--60. 
9. IVANOV, V. IC, VASIN, V. V. and TANANA, V.. P., The Theory of Linear Ill-posed Problems and itsApplicnatms. Naulm, Moscow, 

1978. 
10. KURZHANSKII, A. B., Control and Observation under Conditions of Uncertainty. Nauka, Moscow, 1977. 
11. GUSEM M. I. and KURZHANSKII, A. B., Inverse problems in the dynamics of controlled systems. In Mechan/cs and 

Scienafic-Technical Progre~ VoL I: General and Applied Mechanics. Nauka, Moscow, 1987. 
12. CHERNOUS'KO, E L., Estimation of the Phase State of  Dynamical Systems. Nauka~ Moscow, 1988. 
13. OVSEYEVICH, A. I., TRUSHCHENKOV, V. L and CHERNOUS'KO, E L, Equations of continuous g~mnmteed estimation 

of the state of dynamical systems, lz.v. Aha~ Nauk SSSR. Tekl~ Kibes,  1984, 4, 94-101. 
14. GAJEWSKI, H., GROEGER, K. and ZACHARIAS, IC, NichtBna~ Opemtm#eichunsen und Opemtordifferentialgleidumsen. 

Akademie, Berlin, 1974. 
15. LIONS, J.-L, Controle Optimal de Syst~nes Gouvem~ par des Equagons aux lk, tivdes Panielles. Gauthier-Vlllars, Paris, 1968. 
16. WARGA, J., Optimal Control of  Differenaal and Functional Equaaons. Academic Press, New York, 1972. 
17. TSAR'KOV, I. G., Smoothing of uniformly continuous mappings in Ll, spaces. MaL Zame~, 1993, 54, 3, 123-140. 

Trans~tedbyD.L 


